Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495759

RESUMO

Background: The present study investigated the population structure and breeding biology of the burrowing brachyuran crab species Dotilla blanfordi Alcock, 1900, which is commonly found on the sandy beach of Bhavnagar, located on the Gulf of Kachchh, Gujarat coast, India. Methods: Monthly sampling was conducted from February 2021 to January 2022 at the time of low tide using three line transects perpendicular to the water line, intercepted by a quadrate (0.25 m2) each at three different levels of the middle intertidal region: 20 m, 70 m, and 120 m. The quadrate area was excavated up to 30 cm and sieved for specimen collection. The collected specimens were categorised into different sexes viz., male, non-ovigerous female, or ovigerous female. For the fecundity study of D. blanfordi, the carapace width (mm) as a measure of size as well as their wet weight (g), size, number, and mass of their eggs were also recorded. Results: The study revealed sexual dimorphism among the population, with females having significantly smaller sizes as compared to males. The overall population was skewed towards females, with a bimodal distribution of males and females. The occurrence of ovigerous females throughout the year suggests that the population breeds incessantly throughout the year, with the highest occurrence in August and September. A positive correlation was observed between the morphology of crabs (carapace width and wet body weight) and the size, number, and mass of eggs.


Assuntos
Braquiúros , Animais , Feminino , Masculino , Braquiúros/anatomia & histologia , Fertilidade , Caracteres Sexuais , Índia , Biologia
2.
Front Microbiol ; 15: 1326390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533327

RESUMO

The growth of crop plants, particularly spinach (Spinacia oleracea L.), can be significantly impeded by salinity and drought. However, pre-treating spinach plants with traditional biofertilizers like Jeevamrit and Beejamrit (JB) substantially reverses the salinity and drought-induced inhibitory effects. Hence, this study aims to elucidate the underlying mechanisms that govern the efficacy of traditional fertilizers. The present work employed comprehensive biochemical, physiological, and molecular approaches to investigate the processes by which JB alleviates abiotic stress. The JB treatment effectively boosts spinach growth by increasing nutrient uptake and antioxidant enzyme activity, which mitigates the detrimental effects of drought and salinity-induced stress. Under salt and drought stress conditions, the application of JB resulted in an impressive rise in germination percentages of 80 and 60%, respectively. In addition, the application of JB treatment resulted in a 50% decrease in electrolyte leakage and a 75% rise in the relative water content of the spinach plants. Furthermore, the significant reduction in proline and glycine betaine levels in plants treated with JB provides additional evidence of the treatment's ability to prevent cell death caused by environmental stressors. Following JB treatment, the spinach plants exhibited substantially higher total chlorophyll content was also observed. Additionally, using 16S rRNA sequencing, we discovered and characterized five plant-beneficial bacteria from the JB bio-inoculants. These bacterial isolates comprise a number of traits that contribute to growth augmentation in plants. These evidences suggest that the presence of the aforesaid microorganisms (along with additional ones) is accountable for the JB-mediated stimulation of plant growth and development.

3.
Curr Rheumatol Rev ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38445695

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disorder where inflammation and destruc-tion of bone are the hallmarks of the disease. This review focuses on the etiology, pathophysiolo-gy, and treatment strategies for RA, along with the different approaches used for the synthesis of pyrazoles, the characterization of various properties, and their biological significance for curing RA. The activated immune system of the body causes inflammation of the synovial joint due to the interaction of immune cells, such as T and B lymphocytes, macrophages, plasma cells, den-dritic cells and mast cells. The treatment for RA has been revolutionized with the discovery of new chemical compounds and an understanding of their mechanism in the treatment of the dis-ease. Pyrazoles are the starting materials for the synthesis of heterocyclic compounds and possess great relevance in the pharmaceutical field for the development of new drugs. They are versatile bio-scaffolds in medicinal chemistry and organic synthesis. This has been followed by a deep analysis of pyrazoles and their derivatives on the basis of medical significance in the treatment of RA. This follow-up and information may help the chemists, scientists, and researchers to generate new pyrazole compounds with high efficacy for better treatment of patients with RA. We summa-rize the review with an understanding of the core of pyrazoles and a claim that their derivatives may be helpful in the development of efficient drugs against RA.

4.
Front Bioeng Biotechnol ; 11: 1319927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076429

RESUMO

Phytonanofabrication is one of the most promising areas that has drawn the attention of scientists worldwide due to its eco-friendly nature and biocompatibility. In the current investigation, we reported the phyto-assisted formation of iron oxide nanoparticles (IONPs) from a rare species of Acacia (Acacia jacquemontii). First, ethanolic extracts of the stem powder were analyzed by high-performance thin-layer chromatography (HPTLC) for the identification of phytochemicals in the stem sections of Acacia. Furthermore, IONPs were synthesized by a chemical co-precipitation method by using the stem extract. The phytonanofabricated iron oxide particles were investigated by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and Energy-dispersive X-ray spectroscopy (EDS) for elemental analysis. HPTLC confirmed the presence of several phenols and terpenoids in the ethanolic extracts of the stem. UV-Vis spectroscopy exhibited an absorbance peak at 380 nm, indicating the formation of IONPs, while FTIR spectroscopy showed the typical bands for Fe-O in the range of 599-1,000 cm-1 in addition to several functional groups of organic molecules at 1,596 cm-1, 2,313 cm-1, and 3,573 cm-1. XRD exhibits the amorphous nature of IONPs with peaks at 30.7, 35.5, and 62.7 nm. The IONPs were spherical-shaped, whose size varies from 10 to 70 nm, as confirmed by FESEM. EDS exhibited the presence of Fe, O, C, and NaCl. Finally, the phytonanofabricated iron oxide particles were utilized for the removal of brilliant green (BG) and Congo red (CR) dye from the aqueous solution. The removal efficiency of BG dye was up to 54.28%, while that of Congo red dye was up to 36.72% in 120 min and 60 min, respectively. Furthermore, the effect of pH and contact time was also assessed on both the dyes, where CR exhibited maximum removal at acidic pH, i.e., 47.5%, while BG showed maximum removal at pH 10, i.e., 76.59%.

5.
Front Microbiol ; 14: 1270245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908543

RESUMO

Nanotechnology (NT) and nanoparticles (NPs) have left a huge impact on every field of science today, but they have shown tremendous importance in the fields of cosmetics and environmental cleanup. NPs with photocatalytic effects have shown positive responses in wastewater treatment, cosmetics, and the biomedical field. The chemically synthesized TiO2 nanoparticles (TiO2 NPs) utilize hazardous chemicals to obtain the desired-shaped TiO2. So, microbial-based synthesis of TiO2 NPs has gained popularity due to its eco-friendly nature, biocompatibility, etc. Being NPs, TiO2 NPs have a high surface area-to-volume ratio in addition to their photocatalytic degradation nature. In the present review, the authors have emphasized the microbial (algae, bacterial, fungi, and virus-mediated) synthesis of TiO2 NPs. Furthermore, authors have exhibited the importance of TiO2 NPs in the food sector, automobile, aerospace, medical, and environmental cleanup.

6.
Gels ; 9(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998997

RESUMO

In the present research work, pectin was isolated from the peels of seven citrus fruits (Citrus limon, Citrus limetta, Citrus sinensis, Citrus maxima, Citrus jambhiri, Citrus sudachi, and Citrus hystrix) for a comparison of its physicochemical parameters and its potential use as a thickening agent, gelling agent, and food ingredient in food industries. Among the seven citrus fruits, the maximum yield of pectin was observed from Citrus sudachi, and the minimum yield of pectin was observed from Citrus maxima. The quality of each pectin sample was compared by using parameters such as equivalent weight, anhydrouronic acid (AUA) content, methoxy content, and degree of esterification. It was observed that all seven pectin samples had a high value of equivalent weight (more than 1000), suggesting that all the pectin samples had a high content of non-esterified galacturonic acid in the molecular chains, which provides viscosity and water binding properties. The methoxy content and degree of esterification of all the pectins was lower than 50%, which suggests that it cannot easily disperse in water and can form gel only in presence of divalent cations. The AUA content of all isolated pectins samples was above 65%, which suggests that the pectin was pure and can be utilized as a food ingredient in domestic foods and food industries. From the FTIR analysis of pectin, it was observed that the bond pattern of Citrus maxima, Citrus jambhiri, and Citrus hystrix was similar. The bond pattern of Citrus limon, Citrus limetta, and Citrus sinensis was similar. However, the bond pattern of Citrus sudachi was different from that of all other citrus fruits. The difference in the bond pattern was due to the hydrophobic nature of pectin purified from Citrus limon, Citrus limetta, Citrus sudachi, and Citrus sinensis and the hydrophilic nature of pectin purified from Citrus maxima, Citrus jambhiri, and Citrus hystrix. Hence, hydrophobic pectin can be utilized in the preparation of hydrogels, nanofibers, food packaging material, polysoaps, drug delivery agents, and microparticulate materials, whereas hydrophilic pectin can be utilized for the preparation of gelling and thickening agents.

7.
Redox Rep ; 28(1): 2269331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010378

RESUMO

Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.


Assuntos
Doença de Alzheimer , Neoplasias Encefálicas , Ferroptose , Nanoestruturas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Ferro , Peroxidação de Lipídeos
8.
Front Plant Sci ; 14: 1164461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426982

RESUMO

The development of precise and controlled CRISPR-Cas tools has been made possible by the discovery of protein inhibitors of CRISPR-Cas systems, called anti-CRISPRs (Acrs). The Acr protein has the ability to control off-targeted mutations and impede Cas protein-editing operations. Acr can help with selective breeding, which could help plants and animals improve their valuable features. In this review, the Acr protein-based inhibitory mechanisms that have been adopted by several Acrs, such as (a) the interruption of CRISPR-Cas complex assembly, (b) interference with target DNA binding, (c) blocking of target DNA/RNA cleavage, and (d) enzymatic modification or degradation of signalling molecules, were discussed. In addition, this review emphasizes the applications of Acr proteins in the plant research.

9.
Front Plant Sci ; 14: 1193573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492778

RESUMO

The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.

10.
Front Med (Lausanne) ; 10: 1147373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181347

RESUMO

Medical-grade oxygen is the basic need for all medical complications, especially in respiratory-based discomforts. There was a drastic increase in the demand for medical-grade oxygen during the current pandemic. The non-availability of medical-grade oxygen led to several complications, including death. The oxygen concentrator was only the last hope for the patient during COVID-19 pandemic around the globe. The demands also are everlasting during other microbial respiratory infections. The yield of oxygen using conventional molecular zeolites in the traditional oxygen concentrator process is less than the yield noticed when its nano-form is used. Nanotechnology has enlightened hope for the efficient production of oxygen by such oxygen concentrators. Here in the current review work, the authors have highlighted the basic structural features of oxygen concentrators along with the current working principle. Besides, it has been tried to bridge the gap between conventional oxygen concentrators and advanced ones by using nanotechnology. Nanoparticles being usually within 100 nm in size have a high surface area to volume ratio, which makes them suitable adsorbents for oxygen. Here authors have suggested the use of nano zeolite in place of molecular zeolites in the oxygen concentrator for efficient delivery of oxygen by the oxygen concentrators.

11.
Front Bioeng Biotechnol ; 11: 1323249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260746

RESUMO

Over the last decade there has been a huge increase in the green synthesis of nanoparticles. Moreover, there is a continuous increase in harnessing the potential of microorganisms for the development of efficient and biocompatible nanoparticles around the globe. In the present research work, investigators have synthesized TiO2 NPs by harnessing the potential of Bacillus subtilis MTCC 8322 (Gram-positive) bacteria. The formation and confirmation of the TiO2 NPs synthesized by bacteria were carried out by using UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX/EDS). The size of the synthesized TiO2 NPs was 80-120 nm which was spherical to irregular in shape as revealed by SEM. FTIR showed the characteristic bands of Ti-O in the range of 400-550 cm-1 and 924 cm-1 while the band at 2930 cm-1 confirmed the association of bacterial biomolecules with the synthesized TiO2 NPs. XRD showed two major peaks; 27.5° (rutile phase) and 45.6° (anatase phase) for the synthesized TiO2 NPs. Finally, the potential of the synthesized TiO2 NPs was assessed as an antibacterial agent and photocatalyst. The remediation of Methylene blue (MB) and Orange G (OG) dyes was carried out under UV- light and visible light for a contact time of 150-240 min respectively. The removal efficiency for 100 ppm MB dye was 25.75% and for OG dye was 72.24% under UV light, while in visible light, the maximum removal percentage for MB and OG dye was 98.85% and 80.43% respectively at 90 min. Moreover, a kinetic study and adsorption isotherm study were carried out for the removal of both dyes, where the pseudo-first-order for MB dye is 263.269 and 475554.176 mg/g for OG dye. The pseudo-second-order kinetics for MB and OG dye were 188.679 and 1666.667 mg/g respectively. In addition to this, the antibacterial activity of TiO2 NPs was assessed against Bacillus subtilis MTCC 8322 (Gram-positive) and Escherichia coli MTCC 8933 (Gram-negative) where the maximum zone of inhibition in Bacillus subtilis MTCC 8322 was about 12 mm, and for E. coli 16 mm.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36497569

RESUMO

A balanced microbiota composition is requisite for normal physiological functions of the human body. However, several environmental factors such as air pollutants may perturb the human microbiota composition. It is noticeable that currently around 99% of the world's population is breathing polluted air. Air pollution's debilitating health impacts have been studied scrupulously, including in the human gut microbiota. Nevertheless, air pollution's impact on other microbiotas of the human body is less understood so far. In the present review, the authors have summarized and discussed recent studies' outcomes related to air pollution-driven microbiotas' dysbiosis (including oral, nasal, respiratory, gut, skin, and thyroid microbiotas) and its potential multi-organ health risks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Microbiota , Humanos , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Bactérias
13.
J Inflamm Res ; 15: 2665-2693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509323

RESUMO

Incense burning is practiced alongside many sacred rituals across different regions of the world. Invariable constituents of incense brands are 21% (by weight) herbal and wood powder, 33% bamboo stick, 35% fragrance material, and 11% adhesive powder. Major incense-combustion outputs include particulate matter (PM), volatile organic content, and polyaromatic hydrocarbons. The relative toxicity of these products is an implicit function of particle size and incomplete combustion, which in turn vary for a specific incense brand. Lately, the attention given to the Air Quality Index by international regulatory bodies has created concern about mounting PM toxicity. The uncharacteristically small physical dimensions of these entities complicates their detection, and with no effect of gravity PM fractions rapidly contribute to oxidative stress, enhancing random biochemical reactions upon being inhaled. Incense burning generates four times the PM extent (45 mg•g-1) of cigarettes (~10 mg•g-1). Several poisonous gases, such as CO, CO2, NO2, and SO2, and the unavoidable challenge of disposing of the burnt incense ash further add to the toxicity. Taken together, these issues demonstrate that incense burning warrants prompt attention. The aim of this article is to highlight the toxicity of incense-combustion materials on the environment and human health. This discussion could be significant in framing future policy regarding ecofriendly incense manufacture and reduced usage.

14.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407725

RESUMO

Nanoparticles and nanomaterials have gained a huge amount of attention in the last decade due to their unique and remarkable properties. Metallic nanoparticles like zinc oxide nanoparticles (ZnONPs) have been used very widely as plant nutrients and in wastewater treatment. Here, ZnONPs were synthesized by using onion peel and characterized by various sophisticated instruments like Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and field emission scanning electron microscopes (FESEM). FTIR confirmed ZnONPs synthesis due to the formation of the band in the region of 400-800 cm-1, while FESEM confirmed the spherical shape of the particles whose size varies in the range of 20-80 nm. FTIR revealed several bands from 1000-1800 cm-1 which indicates the capping by the organic molecules on the ZnONPs, which came from onion peel. It also has carbonyl and hydroxyl groups, due to the organic molecules present in the Allium cepa peel waste. The average hydrodynamic size of ZnONPs was 500 nm as confirmed by DLS. The synthesized ZnONPs were then used as a plant nutrient where their effect was evaluated on the growth of Vigna radiate (mung bean) and Triticum aestivum (wheat seeds). The results revealed that the germination and seedling of mung and wheat seeds with ZnONPs were grown better than the control seed. However, seeds of mung and wheat with ZnONPs at median concentration exposure showed an enhancement in percent germination, root, and shoot length in comparison to control. Thus, the effect of ZnONPs has been proved as a nano-based nutrient source for agricultural purposes.

15.
Materials (Basel) ; 15(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269110

RESUMO

With rapid industrialization, there is an ever-increasing demand for iron oxides, calcium oxides, aluminum oxides, silica, and zeolites as raw materials for various industries, but reserves of such metal oxides are continuously diminishing. Therefore, there is an urgent need to explore new alternatives for such value-added minerals. One such material is incense stick ash (ISA), which is among the most unexplored byproducts from residential and holy places. Currently, ISA is of no use and it is disposed of in millions of tons (MTs) in rivers and other water bodies in India due to its sacred value. The major chemical composition of ISA is calcium, silica, alumina, ferrous minerals, magnesium, and traces of Na, K, P, Ti, etc. Major fractions of ISA, i.e., 50-60%, are made up of calcium and magnesium oxides; 20-30% of ISA is made up of silica, alumina, and ferrous minerals, as revealed by X-ray fluorescence spectroscopy (XRF). In the present research work, methods of recovery of value-added micro and nano minerals from ISA are suggested, using cost-effective techniques and an eco-friendly approach. Firstly, magnetic fractions were recovered by a magnetic separation method; then, alumina, silica, and calcium oxides were synthesized from non-magnetic fractions. The confirmation of the synthesized and extracted nanomaterials was done by Fourier transform infrared spectroscopy (FTIR), particle size analyzer (PSA), X-ray diffraction (XRD), field emission scanning electron microscopy with electron diffraction spectroscopy (FESEM-EDS), and transmission electron microscopy (TEM). The purity of synthesized particles varied from 40-80%. In the future, ISA will prove to be an alternative resource material for Fe, Ca, Si, C, Al, and zeolites, which will minimize solid waste pollution and water pollution arising due to the disposal of ISA into water bodies.

16.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160893

RESUMO

Lignin is an important commercially produced polymeric material. It is used extensively in both industrial and agricultural activities. Recently, it has drawn much attention from the scientific community. It is abundantly present in nature and has significant application in the production of biodegradable materials. Its wide usage includes drug delivery, polymers and several forms of emerging lignin nanoparticles. The synthesis of lignin nanoparticles is carried out in a controlled manner. The traditional manufacturing techniques are costly and often toxic and hazardous to the environment. This review article highlights simple, safe, climate-friendly and ecological approaches to the synthesis of lignin nanoparticles. The changeable, complex structure and recalcitrant nature of lignin makes it challenging to degrade. Researchers have discovered a small number of microorganisms that have developed enzymatic and non-enzymatic metabolic pathways to use lignin as a carbon source. These microbes show promising potential for the biodegradation of lignin. The degradation pathways of these microbes are also described, which makes the study of biological synthesis much easier. However, surface modification of lignin nanoparticles is something that is yet to be explored. This review elucidates the recent advances in the biodegradation of lignin in the ecological system. It includes the current approaches, methods for modification, new applications and research for the synthesis of lignin and lignin nanoparticles. Additionally, the intricacy of lignin's structure, along with its chemical nature, is well-described. This article will help increase the understanding of the utilization of lignin as an economical and alternative-resource material. It will also aid in the minimization of solid waste arising from lignin.

17.
Soft comput ; 26(3): 1197-1216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35002500

RESUMO

Analogy-based estimation (ABE) estimates the effort of the current project based on the information of similar past projects. The solution function of ABE provides the final effort prediction of a new project. Many studies on ABE in the past have provided various solution functions, but its effectiveness can still be enhanced. The present study is an attempt to improve the effort prediction accuracy of ABE by proposing a solution function SABE: Stacking regularization in analogy-based software effort estimation. The core of SABE is stacking, which is a machine learning technique. Stacking is beneficial as it works on multiple models harnessing their capabilities and provides a better estimation accuracy as compared to a single model. The proposed method is validated on four software effort estimation datasets and compared with the already existing solution functions: closet analogy, mean, median and inverse distance weighted mean. The evaluation criteria used are mean magnitude of relative error (MMRE), median magnitude of relative error (MdMRE), prediction (PRED) and standard accuracy (SA). The results suggested that the SABE showed promising performance for almost all the evaluation criteria when compared with the results of the earlier studies.

18.
J Basic Microbiol ; 62(3-4): 348-360, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34528719

RESUMO

Nanotechnology has gained huge importance in the field of environmental clean-up today. Due to their remarkable and unique properties, it has shown potential application for the remediation of several pesticides and textile dyes. Recently it has shown positive results for the remediation of sodium dodecyl sulfate (SDS). One of the highly exploited surfactants in detergent preparation is anionic surfactants. The SDS selected for the present study is an example of anionic linear alkyl sulfate. It is utilized extensively in industrial washing, which results in the high effluent level of this contaminant and ubiquitously toxic to the environment. The present review is based on the research depicting the adverse effects of SDS in general and possible strategies to minimizing its effects by bacterial degradation which are capable of exploiting the SDS as an only source of carbon. Moreover, it has also highlighted that how nanotechnology can play a role in the remediation of such recalcitrant pesticides.


Assuntos
Praguicidas , Tensoativos , Dodecilsulfato de Sódio/farmacologia
19.
Nanomaterials (Basel) ; 11(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835573

RESUMO

Cleaning wastewater has become one of the most serious issues for a number of scientists and researchers in recent years, as water is the most basic need for the daily life of humans. There has been a focus on the removal of noxious pollutants from wastewater effluents by using nanocatalysts owing to their unique physicochemical actions and stability. Herein we manufactured TiO2 nanoparticles supported by activated carbon (AC-TiO2) using a cost-effective sonochemical method. The band structures of the AC-TiO2 and TiO2 were modified from 3.2 to 3.1 eV, thus increasing the catalytic activity. The structural, optical and anatase crystal phase properties, with morphological confirmation, were studied by applying UV-DRS, PL, FESEM, XRD, along with HRTEM, respectively. The specific surface area, calculated by BET analysis, was found to be ~241 m2/gm and ~46 m2/gm for AC-TiO2 and TiO2. The degradation efficiency of the as-prepared nanocatalysts against the very toxic but rarely studied organic textile dye pollutant RO 84 was investigated and 97% efficiency were found for the AC-TiO2 as compared to pure TiO2, which is a highly appreciated finding in the catalytic dye degradation application domain. Such surface-modified nanocatalysts could be further implemented for the treatment of wastewaters/waste effluents released from chemical industries, laboratories and other sources.

20.
Materials (Basel) ; 14(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34771859

RESUMO

Environmental pollution is one of the major concerns throughout the world. The rise of industrialization has increased the generation of waste materials, causing environmental degradation and threat to the health of living beings. To overcome this problem and effectively handle waste materials, proper management skills are required. Waste as a whole is not only waste, but it also holds various valuable materials that can be used again. Such useful materials or elements need to be segregated and recovered using sustainable recovery methods. Agricultural waste, industrial waste, and household waste have the potential to generate different value-added products. More specifically, the industrial waste like fly ash, gypsum waste, and red mud can be used for the recovery of alumina, silica, and zeolites. While agricultural waste like rice husks, sugarcane bagasse, and coconut shells can be used for recovery of silica, calcium, and carbon materials. In addition, domestic waste like incense stick ash and eggshell waste that is rich in calcium can be used for the recovery of calcium-related products. In agricultural, industrial, and domestic sectors, several raw materials are used; therefore, it is of high economic interest to recover valuable minerals and to process them and convert them into merchandisable products. This will not only decrease environmental pollution, it will also provide an environmentally friendly and cost-effective approach for materials synthesis. These value-added materials can be used for medicine, cosmetics, electronics, catalysis, and environmental cleanup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...